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Abstract 

We show that the Riemannian Schwarzschild and the “Taub-bolt” instanton solutions are the only 
spaces (M, gtiv) such that: 
. M is a four-dimensional, simply connected manifold with a Riemannian, Ricci-flat C*-metric 

g,, which admits (at least) a l-parameter group pur of isometries without isolated fixed points 
onM. 

?? The quotient (M \ t~)/p* (where LM is the set of fixed points of bLr) is an asymptotically 
flat manifold, and the length of the Killing field corresponding to /I~ tends to a constant at 
infinity. 

0 1999 Published by Elsevier Science B.V. All right reserved. 

Subj. Class.: Differential geometry 
1991 MSC: 53C25 
Keywords: Instantons; Riemannian geometry 

1. Introduction 

Attempts of estimating the path integral of Quantum Gravity via the stationary phase ap- 
proximation motivated the study of “instantons”, i.e. Riemannian, Ricci-flat metrics which 
are regular everywhere. Gibbons and Hawking [l] distinguished instantons having at least 
a one-parameter group of isometries according to whether the isometry has isolated fixed 
points (“nuts”) or two-dimensional subsets of fixed points (“bolts”). The mathematical anal- 
ogy between instantons with fixed points and Lorentzian solutions with Killing horizons 
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raises the question whether the known uniqueness proofs for stationary black hole solutions 
can be carried over to the Riemannian case. In fact, for asymptotically flat solutions with 
up to two nuts and no bolts, a uniqueness result for the Riemannian Kerr metric has been 
obtained [2] by adapting and generalizing Israel’s proof of uniqueness of the Schwarzschild 
solution [3]. 

The present work concerns the problem of finding uniqueness results for the l-parameter 
family of Schwarzschild instantons and for the l-parameter family of so-called Taub-bolt 
instantons (found by Page [4] by “Euclideanizing” the Tat&NUT spacetime [5,27]) which 
read as follows, respectively, 

ds= = sdr=+ s(dr= + (r= - m=) d!G?=), (1) 

&= = @ - 21nl)(r - lnii2) (dt + zn cos Q &$,)2 

(r2 - n2) 

+ (r2 - n2) 
dr* 

(r - 21nl)(r - ]n]/2) + dQ2 > ’ 

where m > 0 and II # 0 are constants and dQ2 is the round metric on the 2-sphere. In (1) 
the subcase m = 0 is just the Euclidean metric on R4 whereas for m > 0 the coordinate 
t is periodic with range 0 < t c: 8nm, and r 2 m. Regarding (2), t is periodic with 
range 0 6 t < 8nn, and r > 2]n]. These spaces are probably unique in the following 
sense. 

Conjecture 1. The Riemannian Schwarzschild and the “Taub-bolt” instanton solutions are 
the only spaces (M, gpu> such that: 
Cl. M is a 4-dimensional manifold with a Riemannian, Ricci-flat C2-metric g,, which 

admits (at least) a l-parameter group pr of isometries. 
C2. ,us has no isolated&ed points on M. 
C3. M is simply connected, 
C4. (M, gWv) is asymptotically flat (AF) or asymptotically locally Jlat (ALF), and the 

trajectories of p5 have bounded length at infinity. 

In defining AF and ALF we may follow [6,28]. (Note that according to this definition, 
flat space is not AF but asymptotically Euclidean). 

While it would be desirable to prove this conjecture, we have obtained a closely related 
uniqueness result. To formulate the latter we introduce the set N = rr(M \ CM) of non- 
trivial orbits of pCLr, where CM denotes the set of fixed points of p5 and n : M + M/~_L~ 
is the canonical projection. In general, the space N of Killing orbits is what has been 
called a V-manifold [8], a Satake-manifold [9] or an orbifold [lo]. However, in some cases, 
(such as for Schwarzschild and Taub-bolt), N actually has the structure of a (standard) 
manifold. In this case there exists a one-to-one correspondence between tensors on N and 
tensors on M \ CM which are orthogonal with respect to every index to the Killing field 
ec” corresponding to ws, and have vanishing Lie derivative along 6’“. In particular, the 
symmetric covariant tensor g,, - V-2,$t, on M (where V = (guU~t‘{“)‘/2 is the norm 
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of tw”) can be “pulled back” to give a metric on N which we call gij. With this metric 
(N, gii) is a Riemannian manifold. 

Our theorem reads as follows. 

Theorem 1. The Riemannian Schwarzschild and the Taub-bolt instanton solutions are the 
only spaces (M, gIV) such that: 
Tl. M is a I-dimensional manifold with a Riemannian, Ricci-jlat C2-metric g,” which 

admits (at least) a I -parameter group pu, of isometries. Moreovel; the set N of non- 
trivial orbits of pcL, is a manifold. 

T2. put has no isolatedfixedpoints on M. 
T3. M is simply connected. 
T4. (N, gij) is asymptotically flat (AF) and the norm of the KillingJield corresponding to 

pt tends to a constant at injinity. 

Note that conditions C2-T2 and C3-T3 agree whereas the other conditions of the theorem 
have similar but different counterparts in the conjecture. In particular, in Tl we have included 
the requirement that N is a manifold. Actually, this latter requirement is probably spurious 
due to the strong condition T2. We will come back to this point in Section 5. As to T4, 
the notion of asymptotic flatness for (N, gij) will be defined in Section 3. We remark that 
condition T4 allows (M, gfiLv) to be flat Euclidean space, in contrast to C4. 

Our requirement on the metric to be C2 permits the introduction of harmonic coordinates, 
in terms of which the condition of Ricci flatness is an elliptic equation for the metric, and 
so the latter is analytic. An elementary result (Section VI, Proposition 1.1. of [ 11 J) shows 
that in this case the Killing field tp is P. But since tfi also satisfies an elliptic equation 
in Ricci flat spaces, it is analytic as well. It is then also possible to find an analytic atlas on 
M of the form (t, xi) where t is a function of the group parameter t, and xi are coordinates 
on N [ 121. It will turn out to be convenient to use this atlas in particular in the asymptotic 
analysis (Section 3). 

Our proof follows the method of Bunting and Masood-ul-Alam for proving uniqueness 
of the Schwarzschild solution among the static, asymptotically flat vacuum black holes [ 131 
with bifurcate horizons. They construct a complete space x by gluing together two copies 
of a t = const. slice along the bifurcation surface of the horizons, and by performing a 
l-point compactification of one of the ends. By a suitable conformal transformation, x 
can be endowed with a metric of vanishing mass, which is sufficiently regular such that the 
limiting case of the positive mass theorem [14] can be applied. This yields that g is flat 
and the original space is Schwarzschild. 

In our case the orbit space N takes the role of the t = const. slices and the bolts take 
the role of the bifurcation surfaces. To follow the strategy of [13] we first (Section 2) 
have to study carefully the local geometry of N in the neighbourhood of a bolt. We then 
(Section 3) perform a detailed analysis of the asymptotic properties of N. Section 4 contains 
a preliminary result on the global geometry and the proof of the theorem. In Section 5 we 
discuss the options of proving the conjecture stated above, and of improving or generalizing 
our theorem by relaxing conditions Tl and T2. 
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2. Properties of bolts 

The set Cm of fixed points of pr has the following structure (cf. Section 2 of [ 11). If q E 
L,+I is isolated it is called a “nut” (after the Euclidean Taub-NUT metric [15]). We exclude 
nuts by assumption T2 of Theorem 1. The remaining possibility is that each connected 
component of CM is a two-surface called “bolt”. At every q E LM the differential /.~r* 
acts as the identity on a 2-dimensional subspace TqWM of the tangent space T4M and as a 
rotation on the orthogonal subspace T,fM, with period t+ = 2n/fc. K (called the “gravity” 
of the bolt) is constant on each bolt and also appears in the matrix representation of V,t, 
in an orthonormal frame (cf. Theorem 5.3 of [ 161). 

In a normal neighbourhood U, of a point q of a bolt, we choose normal coordinates {z”} as 
follows. Choose a basis of orthonormal vectors (&} in T4M such that (Go, Gt ) span T:M 
and { $2, Z3) span TqPM. The normal coordinates {z”} of a point q are exp(za i&) = q. The 
commutativity of pcL, and the exponential map, viz. exp(pr*X) = /.L, (exp X) for X E T4M 
implies that the action of pr is linear in these coordinates, i.e. p:(z) = (wr*)z (q)zB. For 
the Killing vector we get 

P(z) = -$P3Z) = K(Z’azO - z”a,,>. 
r=o 

We now obtain the form of the metric near a bolt in normal coordinates. 

Lemma 1. Let q be an arbitrary point on a bolt and U, a normal neighbourhood of q. 
Consider an arbitrary C2-metric g,p dejined on U, which is invariant under the action of 
p5. Then, in the normal coordinate system introduced above, the metric takes the form (in 
matrix notation) 

where 12 is the 2 x 2 unit matrix, S is the rotation 

(4) 

(5) 

p(z) s +dm, and the 2 x 2 matrices A, B, C are C2 functions of three 
variables p, z2 and z3 in a domain p 3 0. Furthermore, 

A@, z2, z3) = a(z2, z3)Z2 + O(p2), 

B(p, z2, z3) = @)(z2, z3) + O(p2>, 

C(P, z2, z3) = cqz2, z3> + O(p2), 

where a(z2, z3) is a function with a(0, 0) = 1, and C(O)(O, 0) = 12. 

(6) 

Proof. The action of the isometry group in the normal coordinates {z” ] is @r(z)* = H, fyB@, 
where H, is (in matrix notation) 
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Imrimce of the metric under pr mans g+(z) = (&(z)),~ (pf (~)),pg,~(p~ (z)), where 
comma denotes partial derivative. Hence g(H,z) = H,g(z)HT, where (H# = H,;zb. 
The matrix S(z) is defined only at points with p(z) # 0 (although the expression (4) in the 
lemma makes sense also at p(z) = 0 because of the expansion (6)). Let us define a matrix 
g(z) by 

i(z)=(‘t) :*)g(z)(S:(L) IO:> forzsuchthatp(z)#O. 

Usingtheidentity S(H,z) = S(z)R-l(t), theinvarianceequationbecomes simplyg(H,z) = 
i(z) at points where p(z) # 0. This equation motivates the definition of 2 x 2 matrices A, B 
and C, which are functions of three variables p, z*, z3 on a domain where p 3 0, through 
the equation 

= g(z)Izo=p,i~=~,z2,z3, where p 3 0. 
p,z22 

(7) 

Since the right-hand side is a C* function of its arguments, so are A, B and C. Using the 
form of S and the invariance equation, we obtain for any p < 0 

mlzo,p,z’,o,z2.z3 = c-s -iB >I,,$, . (8) 

This equation together with the continuity of g(z) at p(z) = 0 implies that B(0, z*, z3) = 
0. Let now a, b = 0,l and A, B = 2,3. Using again the form of S(z) and the invariance 
equation, we have, for p > 0, 

gab(Z)IZ0=0,z’=p,z2,z3 = All -Aol 
-Aol Aoo P,Z2,Z3 

The limit p + 0 in this expression makes sense, and using definition (7) we obtain 
A(0, z*, z3) = a(~*, z3)Z2 where a(~*, z3) is a C* function. Taking partial derivatives of 
(7) and (8) with respect to p, performing the limit p + 0 and using that g(z) has continuous 
derivatives, we easily get 8pAlp=~ = 0 and aPCIP,u = 0. Noticing that g,“(z = 0) = a,,, 
the lemma follows by Taylor expansion, 0 

We denote the set of all orbits of pr (including its fixed points L,) by fl, and define 
rr(C,) = ,C$. The latter set has the following structure. 

Lemma 2. Let (M, glLV) satisfy conditions Tl and T2 of Theorem 1. 
Then Lg is a smooth, two-dimensional boundary ofN. Moreover; gij has a C2-extension 

to ,Cc and Lg is totally geodesic in (S’, gij). 
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Proof. In a normal neighborhood of a point 4 on a bolt we use normal coordinates [z”} as 
introduced above Lemma 1. Let a, b = 0, 1; A, B = 2,3, and define y” = z2, y’ = z3. 
Using the form of the metric in Lemma 1 we easily obtain, at points where p(z) # 0, 

t”tb&zb = K2p2A, I 1 gab.$+dZb = -K,dlbab, ga&‘dzB = -Kp&dyb, 

g,bdzadzb = &b(ll”Ub, g,BdzadzB = &baadyb, 

where we have introduced two one-forms a0 = dp = (z” dz” + z’ dz’)/p and (Y’ = 
(-z’ dz” + z” dz’)/p. It is now straightforward to show that the symmetric tensor dsi = 

(gbLv - Ve2{,&) dzp dz” takes the form 

ds; = 
det A 
- dp2 + 2 
All 

Boa - 2BIa 
> 

+ 
Bl, Bib 

Cab - ~ 
All > 

dya dyb. 

dp dy“ 

(9) 

Since p and ya are constant along the Killing orbits, they are suitable coordinates on 2 (p 
is of course restricted to be non-negative) and therefore the metric gij on N is given exactly 
by expression (9), where now dp is no longer (Y’ but the differential of a coordinate. The 
boundary of 3 which is given locally by p = 0 is two-dimensional and coincides with 
Cg by construction. Lemma 1 implies ds~],=o = a(~‘) dp2 + Cz’(y’) dya dyb. Since 

A, B and C are C2 functions of p, z2 and z3, it follows that the metric gij extends at least 
in a C2 manner to p = 0. A trivial calculation shows that the second fundamental form 
of Lg in (Q, gi ,) vanishes, which is equivalent to ,Cz 

J+ 
being totally geodesic. Finally, the 

smoothness of follows from the smoothness of the geodesics. 0 

3. Asymptotic structure 

Here we first define asymptotic flatness of the manifold (N, gij) (contained in assumption 
T4 of Theorem 1). We then use assumption Tl, in particular Ricci flatness, together with 
asymptotic properties, to introduce the “twist” (-scalar) of the Killing field on an “end” N”. 
Next, we adapt from [ 171 two technical lemmas (Lemmas 3 and 4 below) on the inversion 
of a certain elliptic operator and of the flat Laplacian. These results will be used to establish 
falloff properties of the metric on N and of quantities constructed from the norm and the 
twist of c@ (Lemma 5), and to show the existence of a compactification of the end of N 
(Lemma 6). Most parts of the proofs of these lemmas parallel closely the treatment of the 
Lorentzian case [ 18-201. 

Definition 1. The manifold (N, gij) is called asymptotically flat iff: 
(1) The “end” N” = 3 \ {a compact set} is diffeomorphic to R3 \ B, where B is a ball. 

(The compact set is chosen appropriately, in particular, sufficiently large). 
(2) On N” there are coordinates such that 

gij - Sij = 02(reS) for some 6 > 0. (10) 
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(A function f(x’) is said to be Ok(P), k E N, if f(x’) = O(P), Jjf(X’) = O(ra-r) 
a.s.o. for all derivatives up to and including the kth ones.) 

This definition might appear over-restrictive as it combines the topological condition 1 
with the purely asymptotic condition 2. We adopt this definition not only because it follows 
common practice [6,28] but also because condition 1 is really required to prove the theorem 
in Section 4. In particular, we require here that N has a single end. Similarly, we believe that 
the definitions of AF and of ALF as given in [6,28] will be required to prove the conjecture 
stated in the introduction. 

On the whole of M we can introduce the twist vector ucL = E~~~~~“V”~’ of the Killing 
vector eP. (CPUor is antisymmetric and ~0123 = m). Since epwP = 0 and since ep 
commutes with wP, wlu and hence also Vl,w,l can be projected to a vector wi and to its 
curl $iwjl on N [23]. From the condition of Ricci-flatness, i.e. R,, = 0, we find that wP 
and wi are curl free, i.e. 

V[@“] = 0, a[iCOj] = 0. (11) 

For the rest of this section we restrict ourselves to the end N”. Since the latter is simply 
connected, there exists a scalar o there, defined up to an additive constant, such that aim = 
wi . Denoting by ‘D the covariant derivative and by Rij the Ricci tensor with respect to gij , 

we can decompose the condition R,, = 0 as follows (by changing signs appropriately in 
the corresponding Lorentzian result [23]) 

Rij = v-'viDjv - ivB4{WiWj -gijgklwkCOl}, (12) 

@~=+v-3~ij~.~. 
1 J' (13) 

D2w = 3v-2gijw.D. v ’ J ’ (14) 

and it follows from (12) and (13) that the Ricci scalar R with respect to gij can be expressed 
as 

R = ;v-4$i,.,. 
1 J’ (15) 

By condition T4, R = 0(rm2-‘), and by resealing tp suitably, we can achieve that 
V + 1. From (15) we obtain wi = O(r-l-E) and so we can adjust the additive constant in 
w such that 

w = 0’ (r+) for some positive e. (16) 

To analyze the full set of field equations it is convenient to introduce some more notation. 
We will employ the metric yij = V2gij on N” and we denote by Di and Rij the covariant 
derivative and the Ricci tensor with respect to yij. We also introduce 

l-v+w 

u*= 1+v2*w 
(17) 

4v2 
O=l--u+K_= 

(l+v2+o)(l+v2-w)’ 
(18) 
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By the asymptotic properties discussed above, the fields IJ~ and 0 exist on NW, and 
0 < 0 < 1. Finally we define the vector field Ai = $(v+Dtv_ - u_Div+). On NW, the 
conditions R,, = 0 yield 

Di(O-‘D’V+) = ~~@-*A’D~I,J*, (19) 

Rij =2W2(D(i~_)(Dj)~+). (20) 

We now state (modified versions of) two lemmas of Meyers 1171 which we require in 
the proof of Lemmas 5 and 6. Lemma 3 is a special case of Corollary 1 to Theorem 1 of 
[ 171, whereas Lemma 4 is a special case of Lemma 5 of [ 171, combined with the corollary 
mentioned above. 

Lemma 3. On an asymptotically$at end N”, let @ E C* be a solution of 

g’j(&tlj +CZillj)l/ = 0 (21) 

with $r = O(r-E)forsome real c andai = 0’ (r-l--S)forsome 6 > 0. Then $ = O*(r-‘). 

Lemma 4. Let p E N U {O], k E N, 0 < E < 1 and h = 0k(r-2-J’-t). Then, on a 
domain R3 \ B, the equation LI@ = h (with A denoting theflat Laplacian) has a solution 

4 spec = Ok+2(r-p-E). Thus the general solution @sen which vanishes at injinity can be 

written as &en = +hhom + &vec where hhorn is a solution of A&,, = 0 with terms of order 
r-q, Vq E N with q 6 p. 

We are now in the position to prove the main asymptotic result. 

Lemma 5. Let (M, gPv) satisfy conditions Tl and T4 of Theorem 1. 
Then on JV” there are coordinates 2’ (with ?* = Sij?‘Zj) and constants m+ and rn: 

such that 

(22) 

(23) 

Proof. The first part of the proof which leads to (26) is a straightforward adaption of a result 
on the asymptotic behaviour of Killing vectors obtained in the 4-dimensional framework 
([18], Proposition 2.2). 

From (lo), (12) and (16) we get 

ViVjV = &ajV - rkjakv = O(r-*-‘). (24) 

We then define h = V* + r2gijDi V’Dj V and the radial derivative, d/dr = (xi/r)&. Using 
(24) and Schwarz’s inequality yields ](d/dr)h] Q 2Ch/r for some constant C > 0. Upon 
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integration, this gives Jh] < Dr 2c for some constant D > 0, and thus ai V = O(rC-‘). 
Inserting the latter estimate in (24) gives ai aj V = O(r C-2-t). Integrating again, we obtain 

ai V = Ei + 0’ (rc-‘-C) (25) 

for some constants Ei. If C < 1 this can be written as ai V = Ei + O’(r-‘). The latter 
result can also be obtained if C > 1 (with some E > 0 possibly different from the E used 
above) by iterating the integration of (24), i.e. by inserting (25) in (24) once again and 
integrating, and by repeating this procedure sufficiently often. One further integration then 
gives V = EiXi + F + 02(r’-‘) where F is a constant. But since V is bounded by virtue 
of T4 and since efi has been normalized so that V tends to 1 at infinity, we have Ei = 0 and 
F = 1. This now allows us to improve the iterated integration of (24) till we end up with 

V = 1 + 02(r-‘), (26) 

where again E > 0 might differ from the E’S used so far. We now pass to the metric yij = 
V2gij and use harmonic coordinates xi with respect to yij on N”. (Such coordinates 
exist and coincide with the coordinates xi of the harmonic atlas (t, xi) with respect to g,, 
introduced in Section 1.) Applying Lemma 3 to (14), (16) and (26), we conclude that 

0 = 02(r-'). (27) 

Apart from irrelevant signs and numerical factors, the remaining part of the proof is 
identical to the Lorentzian analysis [ 191 and will only be sketched. We write Eqs. (19) and 
(20) as 

AIJ, = O(r-2-“), AYij = O(rV2-‘). (28) 

That is to say, we shift all deviations from the flat Laplacians to the right-hand side. Applying 
Lemma 4, we find that there exist constants rnk such that 

1 v*==++2 _ 
r ( > ,I+6 ' 

)$j = Sij + O2 

() 

1 
rltc ' 

and we note that in (30) a homogeneous solution of the Laplace equation of order r-’ would 
be incompatible with the harmonic coordinate condition. The next step is to insert (29) and 
(30) into (19) and (20) and again to invert the Laplacians by a trivial explicit calculation 
and with the help of Lemma 4. In general there appears a homogeneous solution in vij of 
order r -2 which can be removed by a suitable coordinate transformation (compatible with 
the harmonic coordinate condition). We thus arrive at (22) and (23) but with remaining 
terms of the form 02(rp2-‘). The required falloff of 02(re3) can be obtained by another 
straightforward iteration. 0 

We remark that the iteration leading to (22) and (23) can in fact be continued to arbitrary 
high order as in the Lorentzian case [20]. 
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We also note that in terms of the radial coordinate 7 employed here the Schwarzschild 
metric takes on the asymptotic form (l), whereas the3in the Taub-bolt metric in which the 
asymptotic form (22), (23) holds is related to the Y used in (2) by 3 = r - : )n 1. 

We now introduce two scalars sZ,+) and a(_) and new metrics g!]?’ and g!]I’ on N” as 
follows (recall that 0 < 0 < 1 on N”). 

1*& 2 
g?’ = q*,yij = ~ ( 1 2& 

yij = $(l + V2)2 - W2 f 2V}2gij. (31) 

(Superscripts and subscripts (+), (-) and (*) on gij and R have nothing to do with the 
suffixes +, - and f on v, m and rni used before). 

Lemma 6. Let (M, gcLv) satisfy conditions Tl and T4 of Theorem 1. Then (N, gjj:‘) is 
asymptotically~at with vanishing mass. Assume further that the constants m+ and m- of 
Lemma 5 do not vanish. Then (N, g!jY’) has a compacti$cation such that 2 = N U A 
where A is a point, and gj,:’ has a C2- extension to A. 

Proof. Due to Lemma 5, the asymptotic behaviour of Q(+) and Q(_) is 

Q~+)=1+=+02 2 2 0 $ m2-n2 4? ) Q(-)=~+02 0 1 =?$ , (32) 

wherem=i(m++m_)andn=i(m+- m_). The proof of the first part is trivial (see 
e.g. [14] for the definition of mass of an AF manifold). As to the second part, if rnh # 0 
then in coordinates Xi = T2j?i it is easy to see (as in the Lorentzian case, [20]) that gjjT’ 
has a C2- extension to the point “at infinity” A given by X’ = 0. 0 

We remark that, again as in the Lorentzian case [21,29], there is even an analytic com- 
pactification. 

4. The theorem 

Recall that ocL is curl-free (11) and hence there exists, locally on M, a scalar w defined 
by V,w = wFL. Using assumption T3 of the theorem, w exists globally on M (and hence 
also globally on N) and is defined up to an additive constant. Since N has a single end, we 
choose o such that it vanishes at infinity. (It then coincides with the scalar w defined only 
on N” in Section 3.) 

We can now introduce the “Ernst potentials” E+ = ,V2 + w and &_ = V2 - w which 
have the following global properties. 

Lemma 7. Let (M, gPv) satisfy conditions Tl, T3 and T4 of Theorem 1. Then -1 < 
&5 < 1. More speciJically, either 
Ll at least one of the potentials satisfies E+ = 1 on N or 
L2 both potentials satisfy -1 < & < 1 on N. 
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Proof. Ricci flatness implies the following equations for &* on N and on M, respectively, 

D2&k = V-2DiE+DiE+ > 0, (33) 

V2&* = v-2v,Ep&& > 0. (34) 

From the strong maximum principle (Theorem 3.5 in [22]) applied to (33) 8, can only 
have a maximum inside ni if it is constant. Furthermore, since the fixed points of pr are of 
course interior points of M, the maximum principle applied to (34) in a neighbourhood of 
the fixed points excludes maxima at such points (on M and hence also on 8). Since both 
potentials approach the value 1 at infinity, we have either & < 1 or & = 1 on N. From 
this and from the identity & = 2V2 - E, > -ET 3 - 1 the remaining statement of the 
lemma follows easily. 0 

Note that by imposing T4 we require 2 to be the union of a compact set and an “end”. We 
do not yet know whether this property also holds for M. Therefore, the maximum principle 
applied only to (34) globally on M would not suffice to prove the lemma. 

We are now in the position of proving Theorem 1. 

Proof of Theorem 1. The proof has two parts, (1) and (2) which correspond to the two 
cases of Lemma 7. 

(1) Ll of Lemma 7 hoZds: We can assume without loss of generality that E_ = 1 on N, 
which implies u_ = 0 and II+ = VP2 - 1, and hence Ai = 0 and 0 = 1. This means 
that Eqs. (19) and (20) become Di D’ Vd2 = 0 and Rij = 0, i.e. yij is locally flat. Using 
coordinates adapted to the Killing vector, the metric takes the local form 

ds2 = V2(dt + ni dxi)2 + Ve26ij dx’ dxj. (35) 

The one-form n = ~i dx’ on N can be obtained from w as any particular solution of 
curly n = -V-4gradw. Since &_ = 1 we have w = V2 - 1 and therefore curls n = 
grad Vp2. Let us now show that (M, gpl,) must contain nuts, against our assumptions, or 
must be the four-dimensional Euclidean space. 

Consider first the case when LM is empty. Then it follows from the definition of asymp- 
totic flatness that N = $is a complete Riemannian manifold. Since, moreover, yi/ij is flat on 
the asymptotically flat end N”, (N, vij) must be diffeomorphic to (R3, 6ij). Furthermore, 
Vm2 is well-defined everywhere on N and solves the flat Laplace equation fIVp2 = 0. 
Hence V must be constant and equal to its asymptotic value 1. This implies qidx’ = 0 
and therefore (M, gwu) is locally flat. But since M is simply connected, the flatness of 
(M, g,,) follows. 

We have thus shown that (M, gwv) must contain either nuts or bolts, or else the space 
is Euclidean. Assume that (M, gpLv) contains a bolt B with gravity K. It is easy to see that 
V,[,VcL~“(~ = 2~~ and ePLvrub V@~“V~~fi]n = 0. Using (12), we obtain that the Ricci 
tensor R of the metric gij = Vw2Sij is 
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where the first equality requires w = V* - 1 and the second equality is generally valid. 
Hence, R must be singular on the bolt, which is impossible from Lemma 2. We can therefore 
conclude that Ll in Lemma 7 requires that the four-metric contains nuts or else (M, gPv) 
is flat. 

(2) L2 in lemma 7 holds: We first observe, using Lemma 7, that the fields u+ = (1 + 
E*)-’ (1 - &) introduced on N” in Section 3 are well defined and non-negative on all of 
N, and the same applies to 0 = 1 - u+u_ = 4V*(l + &)-‘(1 + ET)-‘. 

We also note that the constants rni in Lemma 5 cannot vanish. Assume, on the contrary, 
that e.g. m- = 0. Assume also for the moment that rn; in (22) does not vanish. The term of 
order i-* in (22) containing this constant does not have a definite sign and dominates the 
expansion for large f, which contradicts v_ > 0. Therefore, rn; = 0. Applying Lemma 4 
to (19) we find that the leading term in the expansion of u_ must necessarily be a solution 
of the flat Laplace equation. Since all such solutions of order i-p, p 3 2, change sign on 
NW, the same argument as above leads to a contradiction unless m_ # 0, and in the same 
way we conclude that m+ # 0. Hence Lemma 6 on the asymptotic structure applies. 

We next show that g!]?’ are regular on aN = ‘c$. Since VR(+)Iahi = VL~(_~J~JJ the 

metrics gij 2 (*I = &+’ - nj*)nj*’ agree on the bolts aN (the unit normal vectors of aN 
with respect to gj]?’ are denoted by n!*‘). We also notice that under a conformal resealing 

gij = 52 (V, w)* gij, the extrinsic curvature kij of a two-dimensional submanifold S in 
(N, gij) changes according to 

kij = Qkij + Q-*(*g~j)nk $v,v i- $vkOJ , (37) 

where nk is the unit outward normal of S with respect to gij. 
Setting S = aN we have kij = 0 due to Lemma 2. We next insert 52 = V!& in (37) and 

note that (14) can be written as V*w = 4V-‘V,VVILw on M, and SO g’jViVVjw(aN = 

0. Hence the second fundamental forms k$ of aN in (N, gjjf)) satisfy k!,?’ = -kj17’. 

Therefore we can glue together the two manifolds (N, g/]?‘) and (n, g!Jr)) along aN to 

obtain a C* manifold with C’ metric [24]. Since the metric is piecewise C*, it follows that 
it is C”’ By Lemma 6, the resulting space is a complete three-dimensional asymptotically 
flat manifold with C ‘3 ’ metric and vanishing mass. A short computation shows that it also 
has non-negative Ricci scalar, namely 

The rigidity part of the positive mass theorem [14] implies that this manifold must be 
diffeomorphic to R3 with the flat metric. In particular, both metrics g:J+’ are flat. 

Expression (38) also shows that Ai = 0, which is equivalent to u+ = (YU_, where 
o is a positive constant (due to uk > 0). It is convenient to introduce a function H = 
(1 + a)/( 1 - a) which is regular and satisfies H 1~ > 1 and H 18~ = 1. Eq. (20) 
provides the Ricci tensor of the metric yij in terms of the gradient of u+. Using (31) and 
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the fact that gl’;” is flat, the standard formula for the Ricci tensors of conformally related 
metrics gives (written in Euclidean coordinates): 

a.8.H _ sk’(akH)(alH)a.. = 0 
’ J 2H ‘J 1 (39) 

Multiplying (39) with aj H we obtain Slkal H&H = ,dH, where /3 is a constant. Since H 
cannot be constant it follows that /3 > 0, and we can write /I = 16Mm2 for some positive 
constant M. Then (39) becomes ai aj H = 8MH26ij whose general solution can be written, 
after performing an appropriate translation 2’ = xi + ci, as H = 4Mp2&jiiij. The 
knowledge of H implies that of v+ and a(+). In spherical coordinates {r’, 8, $}, we have 

v+ = & 
4M? 

M2 +4F2 
ds; 1~ = (dF2 + F2 dQ2), ? > M/2, 

where we used H 18~ = 1 and H IN > 1 to determine the range of ?. We now define two 
constants m > Jn] 2 0 by (II = (m + n)-’ (m - n) and M = ,b(m + n) and perform the 
coordinate transformation r = m + ? + M2/(4r2). The metric yij, V and w take the form 

dsy = dr2 + (r2 - 2mr + n2) dS2’, r > m + /a, (40) 

v2= 
r2-2mr+n2 2n(r -m) 

r2_,2 ’ w = (r2 - n2) ’ (41) 

Using this, the metric g,, can be reconstructed by solving curl, n = -V4gradw as in 
part (1). Finally, global regularity of g,” on M requires [4] that either n = 0 which gives 
the l-parameter family of Schwarzschild instantons, or that m = 2 In 1 which gives the 
l-parameter family of Taub-bolt instantons. 0 

5. Discussion 

We can think of improving our theorem in various directions. We discuss here briefly 
three of the most striking problems, namely: 
Pl. As mentioned already in Section 1, we believe that in Tl the assumption that N is a 

manifold can be dropped. 
P2. We would like to prove uniqueness of Taub-bolt purely in the four-dimensional setting, 

e.g. as formulated in Conjecture 1. 
P3. It would be desirable to have a uniqueness result for the case in which nuts as well as 

bolts are a priori allowed to be present. 
Pl. We can show that JV, the space of non-trivial Killing orbits pu, of M is in fact 

a manifold provided that all these orbits have the same period. In a neighbourhood of a 
fixed point p of /_~r, the period of the orbits is determined by the “gravities” of the fixed 
point (cf. [ 11). This is due to the commutativity of the isometry and the exponential map, 
viz. exp&*X) = /1.X (exp X) for a tangent vector X at p, and to the fact that locally 
the exponential map is one-to-one. Since a bolt has only one “gravity”, all orbits in its 
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neighbourhood have the same period. More generally, on a Riemannian manifold with a 
bolt one has control over the period of the orbits on a domain in which the exponential map 
is non-singular. This domain is bounded by the cut points of the geodesics emanating from 
the bolt (cf. Section VIII, Theorem 7.4. of [25]). On these cut loci, the period might change 
and the manifold structure of Af may be lost, though we do not believe that this will happen. 

P2. In the AF case, the conjecture can actually be proven rather straightforwardly along 
the lines of the Lorentzian case [7] (and leads to the Schwarzschild instanton (l)), by 
first showing an analog of the “staticity theorem” (cf. Section 8.2 of [7]), followed by the 
reasoning of the present paper restricted to the case of a hypersurface-orthogonal Killing 
vector. 

As to the asymptotically locally flat case, we recall here from [6,28] the definition of 
ALF (with slight modifications, in particular using the cyclic group ZQ instead of the more 
general options in [6,28]). 
(1) The “end” M” \ [a suitably chosen compact set} is diffeomorphic to R x (s3/zQ). 

(2) The lift di2 of the line element ds2 to the covering space R x S3 takes the form 

di2 = dr2 +r2(cr; +a;) +a; +02(r-I), (42) 

where r E (ro, co) for some constant t-0 is a radial coordinate (in the R direction), ai 
(i = 1,2, 3) are the left-invariant one-forms on the unit sphere. 

If a l-parameter group of isometries pLs of (MOO, gpv) is present, it is likely that the 
latter will leave the lens spaces S,/ZQ invariant (with S,. denoting the 3-spheres of constant 
radius r E (rg, co)), and that ZQ will act on each of the S, as a subgroup of the lift j& of 
pr to the S,. 

If this is the case, we can show that the l-form dual to the Killing field cp is parallel to 
03, and that the quotient manifold (N, gij) is asymptotically flat, as defined in Section 3 
and as required in our theorem. 

We remark that the “end” of the Taub-bolt metric is R x S3 . So we could simplify the 
asymptotic condition by requiring this topology instead of the lens space S, /ZQ. 

P3. Theorem 1 only allows the presence of bolts. Assume we relax assumption T2 by also 
allowing (or only allowing) the presence of nuts, but we keep the other requirements. Then 
there is the example of multi-Tat&r-NUT space (which has only nuts) and which might well 
be the only example. Since this space has a conformally flat space of orbits, it might then 
be possible to show its uniqueness by the strategy of Bunting and Masood-ul-Alam [ 131 as 
pursued in the present paper. If we allow bolts a priori, the problem with this strategy is to 
find a suitable conformal resealing of the metric on N which in particular keeps the metric 
regular on the bolts. In general a resealing might shrink the bolts to points or shift them to 
infinity. There is nevertheless hope to get sufficient control also in this general case in order 
to apply a positive mass theorem. 

On the other hand, the uniqueness result for the Euclidean Kerr metric [2] is restricted to 
the asymptotically flat case, allows only nuts and effectively restricts their number to 2 by 
requiring that M = R2 x S2. We note that in this case the space of orbits is not a manifold 
(contrary to the statement in [2]; the proof of [2] needs to be and can easily be rewritten 
accordingly). The strategy of this proof is based on a generalization of Israel’s proof of 
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uniqueness of the Schwarzschild solution, and on a suitable characterization of the Kerr 
metric. In fact, this characterization naturally extends to the asymptotically locally flat class 
of “Kerr-Taub-NUT” instantons [2] (called “Kerr-Taub-bolt” metrics by the discoverers 
[26,29] since they refer to another Killing vector). Assuming ALF instead of AF it should 
be possible to extend the uniqueness proof of [2] to this class. While we also believe that 
the topological conditions of the original proof can be relaxed, they can probably not be 
removed altogether. 

It would also be interesting to prove uniqueness of asymptotically (locally) Euclidean 
instantons [6] along these lines. 
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